Forecasting of Egypt Wheat Imports Using Multivariate Fuzzy Time Series Model Based on Fuzzy Clustering
نویسنده
چکیده
This paper presents Multivariate-Factors fuzzy time series model for improving forecasting accuracy. The proposed model is based on fuzzy clustering and it employs eight main procedures to build the multivariate-factors model. The model is evaluated by studying the Egypt Wheat imports as a forecasting problem. Forecasting Egypt wheat imports depend on three factors: population size, wheat area, and wheat production. This forecasting problem is considered to be a good benchmark for comparing different forecasting techniques since it exhibits highly nonlinearities over a long period of time and it provides important economical indicators needed for national future planning. Experimental results show that the proposed model provides higher forecasting accuracy than ARIMA model, Regression model and neural network model. Therefore, the proposed model can lead to satisfactory high performance for fuzzy time series.
منابع مشابه
Interpolating time series based on fuzzy cluster analysis problem
This study proposes the model for interpolating time series to use them to forecast effectively for future. This model is established based on the improved fuzzy clustering analysis problem, which is implemented by the Matlab procedure. The proposed model is illustrated by a data set and tested for many other datasets, especially for 3003 series in M3-Competition data. Comparing to the exist...
متن کاملResidual analysis using Fourier series transform in Fuzzy time series model
In this paper, we propose a new residual analysis method using Fourier series transform into fuzzy time series model for improving the forecasting performance. This hybrid model takes advantage of the high predictable power of fuzzy time series model and Fourier series transform to fit the estimated residuals into frequency spectra, select the low-frequency terms, filter out high-frequency term...
متن کاملA NEW APPROACH BASED ON OPTIMIZATION OF RATIO FOR SEASONAL FUZZY TIME SERIES
In recent years, many studies have been done on forecasting fuzzy time series. First-order fuzzy time series forecasting methods with first-order lagged variables and high-order fuzzy time series forecasting methods with consecutive lagged variables constitute the considerable part of these studies. However, these methods are not effective in forecasting fuzzy time series which contain seasonal...
متن کاملAN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING
Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...
متن کاملTime Variant Fuzzy Time Series Approach for Forecasting Using Particle Swarm Optimization
Fuzzy time series have been developed during the last decade to improve the forecast accuracy. Many algorithms have been applied in this approach of forecasting such as high order time invariant fuzzy time series. In this paper, we present a hybrid algorithm to deal with the forecasting problem based on time variant fuzzy time series and particle swarm optimization algorithm, as a highly effi...
متن کامل